所谓“P=NP?”问题,“?”才是关键。
因为不知道等不等于,需要证明的就是等不等于。
简单点的说,计算机解不同的题目,就是将之拆分成加加减减这样最基础的运算。
所以一道题究竟有多难……嗯,主要是对计算机多难,就取决于可以拆分成多少步,或者说花多少时间——计算机基础运算的时间基本一样,所以忽略空间方面的因素,二者大致等价。
这叫时间复杂度,用大O也叫渐进符号表示。
O(1)就是常数级复杂度——最常规的计算,数据规模增加多少,运算花费时间也随之增加多少。
O(logn)就要复杂一点了。
然后还有O(n),O(nlogn),O(n^c),O(c^n),O(n!),O(n^n)……
一级一级,难度逐层上升,解题所用时间花式暴涨。
其中O(n^c)之下,是多项式时间内能解决的,就叫做P类问题。
在此之上的,虽然会随着n的增长,出现指数级甚至更过分的暴涨,却有一个共同点,就是正向解很难,给你一个答案去验证,一般就不难了。
比如大数的质因数分解。
想知道一个大数是不是素数很难,需要从2开始,一直除到根下n。
但告诉你它能被某个数整除,你去验证,则就几步的事。
这类可以在多项式时间里验证的问题,就叫做NP问题。
显然所有P类问题,都是NP问题,因为是简单可验证的。
但NP类问题,是否都是P类问题?是否存在某些特殊的算法,能将这些问题的难度降低到多项式时间可以解决,就仿佛给答案去验证的程度上去呢?
这就是“P=NP?”了。
在研究的过程中,又诞生出了NPC问题及NP-hard问题。
所谓NPC,就是NP问题可以约化成为的一类问题。
只要解决这样一个问题,就可以附带的解决一大票问题。只要证明了NPC问题有快速算法,就基本证明了P=NP。
【NP-hard就不说了,这是一类包括NPC又大于NPC的问题,定义是超出NP的,所以和这道题没什么关系。】
最初所有人都以为NPC只是空想,直到真的出现了这样一个问题
也就是NPC的鼻祖——逻辑电路问题。
此后一大堆NPC冒出来,因为要证明新的NPC,只要将之归约为已知的NPC就行了,于是哈密顿回路、TSP问题、SAT问题、背包问题、旅行商问题,都变成了NPC。
不过出这道题的人一定没看到叶寒那篇关于蛋白质折叠的论文……
或者看到了还没来得及改;
也可能想改但是落子无悔,改不了了……
如果P=NP被证明,那整个世界,都会变得与我们认为的完全不同。
灵感与创造将没有任何价值,因为所有问题的解,都可以用努力的算法解决,而且在多项式时间内。
就仿佛是,任何能够欣赏交响乐的人,都能成为莫扎特;每个懂得数学论证的人,都是高斯;每个研究投资策略的人,都可以是巴菲特……
同样道理,预测蛋白质折叠再不需穷举,多项式时间就可以得到确定答案。
怎么可能!
所以对于P=NP?问题,叶寒是倾向于业界多数意见的——不成立。
不过他也没有能够成功证明或证伪,只是提出了某一类NPC问题,与其他NPC问题并不等价——这已经很强大了。
更强大的是,他搞出了这类问题的混沌模型,并给出了对应的三维流形吸引子,简称叶氏吸引子,然后结合某种空间密铺算法,进行了大幅优化修正。
绝大多数人都知道相对论,知道量子力学,也听过混沌两个字,但不一定知道,混沌理论,和量子力学、相对论并列,被认为二十世纪科学领域的最伟大发现。
很多人说,物理学已经一百多年没有像样的进展了,混沌的发现,绝对算是一个。
从三体问题,到湍流,到分子热运动……包括生物种群、天文研究,无处没有混沌的影子。
虽然仍旧很难给出确切的答案,毕竟混沌问题很难有确切答案,否则就不叫混沌了。
但也算成功给出了这类题型多项式时间内求解的优化算法。
十分幸运,米村给出的题目中,就有一道属于被他解决掉的那一系列的。
虽然表面看上去和蛋白质折叠毫无关系,其实只要证明归约一下,就可以简单复制粘贴了……